Supercameras Could Capture Never-Before-Seen Detail

Steve Williams

Site Founder, Site Owner, Administrator
By Charles Q. Choi, InnovationNewsDaily Contributor | LiveScience.com

A supercamera that can take gigapixel pictures — that's 1,000 megapixels — has now been unveiled.
Researchers say these supercameras could have military, commercial and civilian applications, and that handheld gigapixel cameras may one day be possible.
The gigapixel camera uses 98 identical microcameras in unison, each armed with its own set of optics and a 14-megapixel sensor. These microcameras, in turn, all peer through a single large spherical lens to collectively see the scene the system aims to capture. Since the optics of the microcameras are small, they are relatively easy and cheap to fabricate.
A specially designed electronic processing unit stitches together all the partial images each microcamera takes into a giant, one-gigapixel image. In comparison, film can have a resolution of about 25 to 800 megapixels, depending on the kind of film used.
"In the near-term, gigapixel cameras will be used for wide-area security, large-scale event capture — for example, sport events and concerts — and wide-area multiple-user scene surveillance — for example, wildlife refuges, natural wonders, tourist attractions," said researcher David Brady, an imaging researcher at Duke University in Durham, N.C., told InnovationNewsDaily. "As an example, a gigapixel camera mounted over the Grand Canyon or Times Square will enable arbitrarily large numbers of users to simultaneously log on and explore the scene via telepresence with much greater resolution than they could if they were physically present."

Gigapixel cameras may have scientific value. For instance, a gigapixel snapshot of the Pocosin Lakes National Wildlife Refuge allowed details such as the number of tundra swans on the lake or in the distant sky at that precise moment to be seen, allowing researchers to track individual birds and analyze behavior across the flock. Very wide-field surveillance of the sky is possible as well, enabling analysis of events such as meteor showers.
"I believe that the need to store, manage and mine these data streams will be the definitive application of supercomputers," Brady said.
The gigapixel device currently delivers one-gigapixel images at a speed of about three frames per minute. It actually captures images in less than a tenth of a second — it just takes 18 seconds to transfer the full image from the microcamera array to the camera's memory.
The camera also currently only takes black-and-white images, since color pictures are more difficult to analyze. "Next-generation systems will be color cameras," Brady said.
In addition, the camera is quite large, measuring 29.5 by 29.5 by 19.6 inches (75 by 75 by 50 centimeters), a size required by the space currently needed to cool its electronics and keep them from overheating. The researchers hope that as more efficient and compact electronics get developed, handheld gigapixel cameras might one day emerge, similar in size to current handheld single-lens reflex (SLR) cameras.

"Of course, it is not possible for a person to hold a camera steady enough to capture the full resolution of a gigapixel camera, so it may be desirable to mount the camera on a tripod," Brady said. "On the other hand, motion compensation strategies may overcome this challenge."
The researchers are also working on more powerful cameras. They have currently built a two-gigapixel prototype camera that possesses 226 microcameras, and are in the manufacturing phase for a 10-gigapixel system. Ten- to 100-gigapixel cameras "will remain more backpack-size rather than handheld," Brady said.
 

MylesBAstor

Well-Known Member
Apr 20, 2010
11,238
81
1,725
New York City
By Charles Q. Choi, InnovationNewsDaily Contributor | LiveScience.com

A supercamera that can take gigapixel pictures — that's 1,000 megapixels — has now been unveiled.
Researchers say these supercameras could have military, commercial and civilian applications, and that handheld gigapixel cameras may one day be possible.
The gigapixel camera uses 98 identical microcameras in unison, each armed with its own set of optics and a 14-megapixel sensor. These microcameras, in turn, all peer through a single large spherical lens to collectively see the scene the system aims to capture. Since the optics of the microcameras are small, they are relatively easy and cheap to fabricate.
A specially designed electronic processing unit stitches together all the partial images each microcamera takes into a giant, one-gigapixel image. In comparison, film can have a resolution of about 25 to 800 megapixels, depending on the kind of film used.
"In the near-term, gigapixel cameras will be used for wide-area security, large-scale event capture — for example, sport events and concerts — and wide-area multiple-user scene surveillance — for example, wildlife refuges, natural wonders, tourist attractions," said researcher David Brady, an imaging researcher at Duke University in Durham, N.C., told InnovationNewsDaily. "As an example, a gigapixel camera mounted over the Grand Canyon or Times Square will enable arbitrarily large numbers of users to simultaneously log on and explore the scene via telepresence with much greater resolution than they could if they were physically present."

Gigapixel cameras may have scientific value. For instance, a gigapixel snapshot of the Pocosin Lakes National Wildlife Refuge allowed details such as the number of tundra swans on the lake or in the distant sky at that precise moment to be seen, allowing researchers to track individual birds and analyze behavior across the flock. Very wide-field surveillance of the sky is possible as well, enabling analysis of events such as meteor showers.
"I believe that the need to store, manage and mine these data streams will be the definitive application of supercomputers," Brady said.
The gigapixel device currently delivers one-gigapixel images at a speed of about three frames per minute. It actually captures images in less than a tenth of a second — it just takes 18 seconds to transfer the full image from the microcamera array to the camera's memory.
The camera also currently only takes black-and-white images, since color pictures are more difficult to analyze. "Next-generation systems will be color cameras," Brady said.
In addition, the camera is quite large, measuring 29.5 by 29.5 by 19.6 inches (75 by 75 by 50 centimeters), a size required by the space currently needed to cool its electronics and keep them from overheating. The researchers hope that as more efficient and compact electronics get developed, handheld gigapixel cameras might one day emerge, similar in size to current handheld single-lens reflex (SLR) cameras.

"Of course, it is not possible for a person to hold a camera steady enough to capture the full resolution of a gigapixel camera, so it may be desirable to mount the camera on a tripod," Brady said. "On the other hand, motion compensation strategies may overcome this challenge."
The researchers are also working on more powerful cameras. They have currently built a two-gigapixel prototype camera that possesses 226 microcameras, and are in the manufacturing phase for a 10-gigapixel system. Ten- to 100-gigapixel cameras "will remain more backpack-size rather than handheld," Brady said.

Wow we can see those nose hairs in stunning detail now :(
 

DonH50

Member Sponsor & WBF Technical Expert
Jun 22, 2010
3,964
323
1,670
Monument, CO
Interesting twist on an old approach.

Myles, I did NOT need that image in my mind... :)

Off-Topic Aside: Pop Photo reviewed the Canon 5D MK III and Nikon D800 in the last issue; based on the test results it looks like the Canon won, expecially at high ISO. The earlier DXO test had the Nikon the winner. I still like the Canon, but the price difference is also pretty steep... Steve, did you get a new 5D yet?
 
Last edited:

DonH50

Member Sponsor & WBF Technical Expert
Jun 22, 2010
3,964
323
1,670
Monument, CO
It's fixed, order so I can read your review! :)

Back on topic: Dumping the data has to be painful -- 18 seconds now per the article. Wonder what the resolution of the ADC is behind each pixel? I also wonder how they handle alignment across chips (microcameras), that also has to be tricky. Finally, all those chips and electronics has to generate some heat, and heat is a major source of noise (and dark current) in image sensors. I wonder if they are cooling it and how... Astronomic sensors I have dealt with are often cooled using fancy fridges or liquid nitrogen systems; helium in some cases. A very interesting, and impressive, camera system!
 

Bruce B

WBF Founding Member, Pro Audio Production Member
Apr 25, 2010
7,007
515
1,740
Snohomish, WA
www.pugetsoundstudios.com
Wow we can see those nose hairs in stunning detail now :(

When I got my first High Definition TV, the first thing I watched was the Seahawks in the Superbowl. When the camera did a close up on Paul Allen..... YIKES!!! That man needs some SERIOUS dental work!
 

DonH50

Member Sponsor & WBF Technical Expert
Jun 22, 2010
3,964
323
1,670
Monument, CO
Don

IIRC they fixed it with a piece of dark tape. I guess I am looking for something a little more substantial

Yeah, me too, but I wouldn't bet on it...

@Bruce: Nose hair and bad teeth, not sure I'd want one of these supercameras... :)
 

NorthStar

Member
Feb 8, 2011
24,305
1,323
435
Vancouver Island, B.C. Canada
---The Digital age is simply amazing!

Perhaps too amazing, as we forget to love each other and live more harmoniously in direct with the nature surrounding us? :b
 

cjfrbw

Well-Known Member
Apr 20, 2010
3,361
1,355
1,730
Pleasanton, CA
Eeeewww! The playboy bunny has lint and squamous roughage in her navel!
 

About us

  • What’s Best Forum is THE forum for high end audio, product reviews, advice and sharing experiences on the best of everything else. This is THE place where audiophiles and audio companies discuss vintage, contemporary and new audio products, music servers, music streamers, computer audio, digital-to-analog converters, turntables, phono stages, cartridges, reel-to-reel tape machines, speakers, headphones and tube and solid-state amplification. Founded in 2010 What’s Best Forum invites intelligent and courteous people of all interests and backgrounds to describe and discuss the best of everything. From beginners to life-long hobbyists to industry professionals, we enjoy learning about new things and meeting new people, and participating in spirited debates.

Quick Navigation

User Menu

Steve Williams
Site Founder | Site Owner | Administrator
Ron Resnick
Site Co-Owner | Administrator
Julian (The Fixer)
Website Build | Marketing Managersing